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Abstract We prove the dynamical large deviations for a particle system in which particles
may have different velocities. We assume that we have two infinite reservoirs of particles at
the boundary: this is the so-called boundary driven process. The dynamics we considered
consists of a weakly asymmetric simple exclusion process with collision among particles
having different velocities.

Keywords Boundary driven exclusion processes · Large deviations

1 Introduction

In the last years there has been considerable progress in understanding stationary non equi-
librium states: diffusive systems in contact with different reservoirs at the boundary im-
posing a gradient on the conserved quantities of the system. In these systems there is a
flow of matter through the system and the dynamics is not reversible. The main difference
with respect to equilibrium (reversible) states is the following: in equilibrium, the invariant
measure, which determines the thermodynamic properties, is given for free by the Gibbs
distribution specified by the Hamiltonian; on the other hand, in non equilibrium states the
construction of the stationary state requires the solution of a dynamical problem. One of
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the most striking typical property of these systems is the presence of long-range correla-
tions. For the symmetric simple exclusion this was already shown in a pioneering paper by
Spohn [14]. We refer to [5, 7] for two recent reviews on this topic.

We discuss this issue in the context of stochastic lattice gases in a box of linear size N

with birth and death processes at the boundary modeling the reservoirs. We consider the
case when there are many thermodynamic variables: the local density denoted by ρ, and the
local momentum denoted by pk , k = 1, . . . , d , d being the dimension of the box.

Let the set of possible velocities, V , be a finite subset of R
d , and for a point x =

(x1, . . . , xd) ∈ R
d , let x̃ = (x2, . . . , xd). The model which we will study can be infor-

mally described as follows: fix a velocity v ∈ V , an integer N ≥ 1, and boundary densities
0 < αv(·) < 1 and 0 < βv(·) < 1; at any given time, each site of the set {1, . . . ,N − 1} ×
{0, . . . ,N − 1}d−1 is either empty or occupied by one particle at velocity v. In the bulk,
each particle attempts to jump at any of its neighbors at the same velocity, with a weakly
asymmetric rate. To respect the exclusion rule, the particle jumps only if the target site at
the same velocity v is empty; otherwise nothing happens. At the boundary, sites with first
coordinates given by 1 or N − 1 have particles being created or removed in such a way that
the local densities are αv(x̃) and βv(x̃): at rate αv(x̃/N) a particle is created at {1} × {x̃}
if the site is empty, and at rate 1 − αv(x̃) the particle at {1} × {x̃} is removed if the site is
occupied, and at rate βv(x̃) a particle is created at {N − 1} × {x̃} if the site is empty, and at
rate 1 − βv(x̃) the particle at {N − 1} × {x̃} is removed if the site is occupied. Superposed
to this dynamics, there is a collision process which exchange velocities of particles in the
same site in a way that momentum is conserved. Similar models have been studied by [1, 8,
11]. In fact, the model we consider here is based on the model of Esposito et al. [8] which
was used to derive the Navier-Stokes equation. It is also noteworthy that the derivation of
hydrodynamic limits and macroscopic fluctuation theory for a system with two conserved
quantities have been studied in [4].

The hydrodynamic limit for the above model has been proved in [12]. The hydrodynamic
equation is derived from the underlying stochastic dynamics through an appropriate scaling
limit in which the microscopic time and space coordinates are rescaled diffusively. The
hydrodynamic equation thus represents the law of large numbers for the empirical density
of the stochastic lattice gas. The convergence has to be understood in probability with respect
to the law of the stochastic lattice gas. Once it is established, a natural question is to consider
large deviations from the hydrodynamic limit.

This article thus provides a derivation of the dynamical large deviations for this model. As
usual, the main difficulty appears in the proof of the lower bound where one needs to show
that any trajectory λt , 0 ≤ t ≤ T , with finite rate function, IT (λ) < ∞, can be approximated
by a sequence of regular trajectories {λn : n ≥ 1} such that

λn → λ and IT (λn) → IT (λ). (1.1)

To avoid this difficulty, we follow the method introduced in [9]. It is well known that
if IT (λ) < ∞, then there exists an external field H associated to λ, in the sense that λ

solves a hydrodynamic equation perturbed by the external field H . The strategy of [9] is to
approximate the external field H by a sequence of smooth functions, Hn, and then to show
that the corresponding weak solutions of the hydrodynamical equations perturbed by Hn

converge to λ in the sense (1.1).
The main difference of our proof with respect to theirs, is that their proof of the con-

vergence (1.1) relied on some energy estimates that we were not able to achieve due to the
presence of velocities. Therefore, we had to overcome this problem by taking an alternative
approach at that part. More specific details are given in Sect. 5.
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The article is organized as follows: in Sect. 2 we establish the notation and state the
main results of the article; in Sect. 3, we review the hydrodynamics for this model, that was
obtained in [12]; in Sect. 4, several properties of the rate function are derived; Sect. 5 proves
the IT (·|γ )-density, which is a key result for proving the lower bound; finally, in Sect. 6 the
proofs of the upper and lower bounds of the dynamical large deviations are given.

2 Notation and Results

Fix a positive integer d ≥ 1, and denote by Dd the open set (0,1) × T
d−1, where T

k is the
k-dimensional torus (R/Z)k = [0,1)k , and by � the boundary of Dd : � = {(u1, . . . , ud) ∈
[0,1] × T

d−1;u1 = 0 or 1}.
For an open subset � of R × T

d−1, Cm(�), 1 ≤ m ≤ +∞, stands for the space of m-
continuously differentiable real functions defined on �. Let Cm

0 (�) (resp. Cm
c (�)), 1 ≤ m ≤

+∞, be the subset of functions in Cm(�) which vanish at the boundary of � (resp. with
compact support in �).

For each integer N ≥ 1, denote by T
d−1
N = (Z/NZ)d−1 = {0, . . . ,N − 1}d−1, the discrete

(d−1)-dimensional torus of length N . Let Dd
N = {1, . . . ,N −1}×T

d−1
N be the cylinder in Z

d

of length N − 1 and basis T
d−1
N and let �N = {(x1, . . . , xd) ∈ Z × T

d−1
N ; x1 = 1 or (N − 1)}

be the boundary of Dd
N .

Let V ⊂ R
d be a finite set of velocities v = (v1, . . . , vd). Assume that V is invariant under

reflexions and permutations of the coordinates:

(v1, . . . , vi−1,−vi, vi+1, . . . , vd) and (vσ(1), . . . , vσ(d)) (2.1)

belong to V for all 1 ≤ i ≤ d , and all permutations σ of {1, . . . , d}, provided (v1, . . . , vd)

belongs to V .
On each site of Dd

N , at most one particle for each velocity is allowed. We denote: the
number of particles with velocity v at x, v ∈ V , x ∈ Dd

N , by η(x, v) ∈ {0,1}; the number
of particles in each velocity v at a site x by ηx = {η(x, v);v ∈ V}; and a configuration by
η = {ηx;x ∈ Dd

N }. The set of particle configurations is XN = ({0,1}V )Dd
N .

On the interior of the domain, the dynamics consists of two parts: (i) each particle of
the system evolves according to a nearest neighbor weakly asymmetric random walk with
exclusion among particles of the same velocity, and (ii) binary collision between particles
of different velocities. Let p(x, v) be an irreducible probability transition function of finite
range, and mean velocity v:

∑

x

xp(x, v) = v.

The jump law and the waiting times are chosen so that the jump rate from site x to site x +y

for a particle with velocity v is

PN(y, v) = 1

2

d∑

j=1

(δy,ej
+ δy,−ej

) + 1

N
p(y, v),

where δx,y stands for the Kronecker delta, which equals one if x = y and 0 otherwise, and
{e1, . . . , ed} is the canonical basis in R

d .
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2.1 The Boundary Driven Exclusion Process

Our main interest is to examine the stochastic lattice gas model given by the generator LN

which is the superposition of the boundary dynamics with the collision and exclusion:

LN = N2{Lb
N + Lc

N + Lex
N }, (2.2)

where Lb
N stands for the generator which models the part of the dynamics at which a particle

at the boundary can enter or leave the system, Lc
N stands for the generator which models the

collision part of the dynamics and lastly, Lex
N models the exclusion part of the dynamics. Let

f be a function on XN . The generator of the exclusion part of the dynamics, Lex
N , is given

by

(Lex
N f )(η) =

∑

v∈V

∑

x,z∈Dd
N

η(x, v)[1 − η(z, v)]PN(z − x, v)[f (ηx,z,v) − f (η)],

where

ηx,y,v(z,w) =

⎧
⎪⎨

⎪⎩

η(y, v) if w = v and z = x,

η(x, v) if w = v and z = y,

η(z,w) otherwise.

The generator of the collision part of the dynamics, Lc
N , is given by

(Lc
Nf )(η) =

∑

y∈Dd
N

∑

q∈Q

p(y, q, η)[f (ηy,q) − f (η)],

where Q is the set of all collisions which preserve momentum:

Q = {q = (v,w,v′,w′) ∈ V 4;v + w = v′ + w′},
the rate p(y, q, η) is given by

p(y, q, η) = η(y, v)η(y,w)[1 − η(y, v′)][1 − η(y,w′)],
and for q = (v0, v1, v2, v3), the configuration ηy,q after the collision is defined as

ηy,q(z, u) =
{

η(y, vj+2) if z = y and u = vj for some 0 ≤ j ≤ 3,

η(z,u) otherwise,

where the index of vj+2 should be taken modulo 4. Particles of velocities v and w at the
same site collide at rate one and produce two particles of velocities v′ and w′ at that site.

Finally, the generator of the boundary part of the dynamics is given by

(Lb
Nf )(η) =

∑

x∈Dd
N

x1=1

∑

v∈V

[αv(x̃/N)[1 − η(x, v)] + (1 − αv(x̃/N))η(x, v)][f (σ x,vη) − f (η)]

+
∑

x∈Dd
N

x1=N−1

∑

v∈V

[βv(x̃/N)[1 − η(x, v)]

+ (1 − βv(x̃/N))η(x, v)][f (σ x,vη) − f (η)],
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where x̃ = (x2, . . . , xd),

σx,vη(y,w) =
{

1 − η(x,w), if w = v and y = x,

η(y,w), otherwise

and for every v ∈ V , αv,βv ∈ C2(Td−1). We also assume that, for every v ∈ V , αv and βv

have images belonging to some compact subset of (0,1). The functions αv and βv , which
affect the birth and death rates at the two boundaries, represent the densities of the reservoirs.

Note that time has been speeded up diffusively in (2.2). Let {η(t); t ≥ 0} be the Markov
process with generator LN , and let D(R+,XN) be the set of right continuous functions
with left limits taking values on XN . For a probability measure μ on XN , denote by Pμ the
measure on the path space D(R+,XN) induced by {η(t); t ≥ 0} and the initial measure μ.
Expectation with respect to Pμ is denoted by Eμ.

2.2 Mass and Momentum

For each configuration ξ ∈ {0,1}V , denote by I0(ξ) the mass of ξ and by Ik(ξ), k = 1, . . . , d,

the momentum of ξ :

I0(ξ) =
∑

v∈V

ξ(v), Ik(ξ) =
∑

v∈V

vkξ(v).

Set I (ξ) := (I0(ξ), . . . , Id(ξ)). Assume that the set of velocities is chosen in such a way that
the unique quantities conserved by the random walk dynamics described above are mass and
momentum:

∑
x∈Dd

N
I (ηx). Two examples of sets of velocities satisfying these conditions

can be found at [8].
For each chemical potential λ = (λ0, . . . , λd) ∈ R

d+1, denote by mλ the measure on
{0,1}V given by

mλ(ξ) = 1

Z(λ)
exp{λ · I (ξ)}, (2.3)

where Z(λ) is a normalizing constant. Note that mλ is a product measure on {0,1}V , i.e.,
that the variables {ξ(v);v ∈ V} are independent under mλ.

Denote by μN
λ the product measure on XN , with marginals given by

μN
λ {η;η(x, ·) = ξ} = mλ(ξ),

for each ξ in {0,1}V and x ∈ Dd
N . Note that {η(x, v);x ∈ Dd

N, v ∈ V} are independent vari-
ables under μN

λ , and that the measure μN
λ is invariant for the exclusion process with periodic

boundary condition.
The expectation under μN

λ of the mass and momentum are given by

ρ(λ) := EμN
λ
[I0(ηx)] =

∑

v∈V

θv(λ),

pk(λ) := EμN
λ
[Ik(ηx)] =

∑

v∈V

vkθv(λ).

In this formula θv(λ) denotes the expected value of the density of particles with velocity v

under mλ:

θv(λ) := Emλ
[ξ(v)] = exp{λ0 + ∑d

k=1 λkvk}
1 + exp{λ0 + ∑d

k=1 λkvk}
.
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Denote by (ρ,p)(λ) := (ρ(λ),p1(λ), . . . , pd(λ)) the map that associates the chemical
potential to the vector of density and momentum. It is possible to prove that (ρ,p) is a
diffeomorphism onto U ⊂ R

d+1, the interior of the convex envelope of {I (ξ); ξ ∈ {0,1}V }.
Denote by � = (�0, . . . ,�d) : U → R

d+1 the inverse of (ρ,p). This correspondence allows
one to parameterize the invariant states by the density and momentum: for each (ρ,p) in U

we have a product measure νN
ρ,p = μN

�(ρ,p) on XN .

2.3 Dynamical Large Deviations

Fix T > 0, let M+ be the space of finite positive measures on Dd endowed with the weak
topology, and let M be the space of bounded variation signed measures on Dd endowed
with the weak topology. Let M+ × Md be the cartesian product of these spaces endowed
with the product topology, which is metrizable. Let also M0 be the subset of M+ × Md of
all absolutely continuous measures with respect to the Lebesgue measure satisfying:

M0 = {π ∈ M+ × Md;π(du) = (ρ,p)(u)du, and (ρ,p) ∈ U, a.e.}.
Note that if (ρ,p) ∈ U, then 0 ≤ ρ(u) ≤ |V|, |pk(u)| ≤ v̆|V|, k = 1, . . . , d , where v̆ =
maxv∈V v1. Let D([0, T ], M+ × Md) be the set of right continuous functions with left limits
taking values on M+ × Md endowed with the Skorohod topology. M0 is a closed subset of
M+ × Md and D([0, T ], M0) is a closed subset of D([0, T ], M+ × Md). For a measure
π ∈ M, denote by 〈π,G〉 the integral of a function G with respect to π .

Let �T = (0, T ) × Dd and �T = [0, T ] × Dd . For 1 ≤ m,n ≤ +∞, denote by Cm,n(�T )

the space of functions G = Gt(u) : �T → R with m continuous derivatives in time and
n continuous derivatives in space. We also denote by Cm,n

0 (�T ) (resp. C∞
c (�T )) the set of

functions in Cm,n(�T ) (resp. C∞,∞(�T )) which vanish at [0, T ] × � (resp. with compact
support in �T ).

Let the energy Q : D([0, T ], M0) → [0,∞] be given by

Q(π) =
d∑

k=0

d∑

i=1

sup
G∈C∞

c (�T )

{
2
∫ T

0
dt〈pk,t , ∂ui

Gt 〉 −
∫ T

0
dt

∫

Dd

G(t, u)2 du

}
.

where pk,t (u) = pk(t, u) and p0,t (u) = ρ(t, u).
Let C

1,2
0 (�T ) be the set of vector valued function G = (G0, . . . ,Gd) : [0, T ] × Dd →

R
d+1, with each coordinate Gk in C

1,2
0 (�T t), k = 0, . . . , d . For each G ∈ C

1,2
0 (�T ) and each

measurable function γ = (ρ0,p0) : Dd → U, let ĴG = ĴG,γ,T : D([0, T ], M0) → R be the
functional given by

ĴG(π) =
∫

Dd

G(T ,u) · (ρ,p)(T ,u)du −
∫

Dd

G(0, u) · (ρ0,p0)(u)du

−
∫ T

0
dt

∫

Dd

du

{
(ρ,p)(t, u) · ∂tG(t, u) + 1

2
(ρ,p)(t, u) ·

d∑

i=1

∂2
ui

G(t, u)

}

+ 1

2

∫ T

0
dt

∫

{1}×Td−1
dSb(ũ) · ∂u1G(t,u) − 1

2

∫ T

0
dt

∫

{0}×Td−1
dSa(ũ) · ∂u1G(t,u)

+
∫ T

0
dt

∫

Dd

du
∑

v∈V

ṽ · χv(ρ,p)

d∑

i=1

vi∂ui
G(t, u)

−
∫ T

0
dt

∫

Dd

du
∑

v∈V

(
d∑

k=0

vk∂ui
Gk

t (u)

)2

χv(ρ,p),
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where χ(r) = r(1 − r) is the static compressibility, χv(·) = χ(θv(�(·))), for u =
(u1, . . . , ud) ∈ R

d , ũ = (u2, . . . , ud), πt(du) = (ρ,p)(t, u)du, and dS is the Lebesgue mea-
sure on T

d−1. Define JG = JG,γ,T : D([0, T ], M+ × Md) → R by

JG(π) =
{

ĴG(π), if π ∈ D([0, T ], M0),

+∞, otherwise.

We define the rate functional IT (·|γ ) : D([0, T ], M+ × Md) → [0,+∞] as

IT (π |γ ) =
⎧
⎨

⎩

sup
G∈C

1,2
0 (�T )

{JG(π)}, if Q(π) < ∞,

+∞, otherwise.

We now present the main result of this article, whose proof is given in Sect. 6, which is the
dynamical large deviations for this boundary driven exclusion process with many conserved
quantities.

Theorem 2.1 Fix T > 0 and a measurable function γ = (ρ0,p0) : Dd → U. Consider a
sequence ηN of configurations in XN associated to γ in the sense that:

lim
N→∞

〈πN
0 (ηN),G〉 =

∫

Dd

G(u)ρ0(u) du,

and

lim
N→∞

〈πN
k (ηN),G〉 =

∫

Dd

G(u)pk(u)du, k = 1, . . . , d,

for every continuous function G : Dd → R. Then, the measure QηN = PηN (πN)−1 on
D([0, T ], M+ × Md) satisfies a large deviation principle with speed Nd and rate func-
tion IT (·|γ ). Namely, for each closed set C ⊂ D([0, T ], M+ × Md),

lim
N→∞

1

Nd
logQηN (C) ≤ − inf

π∈C
IT (π |γ )

and for each open set O ⊂ D([0, T ], M+ × Md),

lim
N→∞

1

Nd
logQηN (O) ≥ − inf

π∈O
IT (π |γ ).

Moreover, the rate function IT (·|γ ) is lower semicontinuous and has compact level sets.

3 Hydrodynamics

Fix T > 0 and let (B,‖ · ‖B) be a Banach space. We denote by L2([0, T ],B) the Banach
space of measurable functions U : [0, T ] → B for which

‖U‖2
L2([0,T ],B)

=
∫ T

0
‖Ut‖2

Bdt < ∞.
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Moreover, we denote by H 1(Dd) the Sobolev space of measurable functions in L2(Dd) that
have generalized derivatives in L2(Dd).

For x = (x1, x̃) ∈ {0,1} × T
d−1, let

d(x) =
⎧
⎨

⎩

a(x̃) = ∑
v∈V (αv(x̃), v1αv(x̃), . . . , vdαv(x̃)), if x1 = 0,

b(x̃) = ∑
v∈V (βv(x̃), v1βv(x̃), . . . , vdβv(x̃)), if x1 = 1.

(3.1)

Fix a bounded density profile ρ0 : Dd → R+, and a bounded momentum profile p0 :
Dd → R

d . A bounded function (ρ,p) : [0, T ] × Dd → R+ × R
d is a weak solution of the

system of parabolic partial differential equations

⎧
⎨

⎩

∂t (ρ,p) + ∑
v∈V ṽ[v · ∇χv(ρ,p)] = 1

2�(ρ,p),

(ρ,p)(0, ·) = (ρ0,p0)(·) and (ρ,p)(t, x) = d(x), x ∈ {0,1} × T
d−1,

(3.2)

if for every vector valued function H ∈ C
1,2
0 (�T ), we have

∫

Dd

H(T ,u) · (ρ,p)(T ,u)du −
∫

Dd

H(0, u) · (ρ0,p0)(u)du

=
∫ T

0
dt

∫

Dd

du

{
(ρ,p)(t, u) · ∂tH(t, u) + 1

2
(ρ,p)(t, u) ·

d∑

i=1

∂2
ui

H(t, u)

}

− 1

2

∫ T

0
dt

∫

{1}×Td−1
dSb(ũ) · ∂u1H(t,u) + 1

2

∫ T

0
dt

∫

{0}×Td−1
dSa(ũ) · ∂u1H(t,u)

−
∫ T

0
dt

∫

Dd

du
∑

v∈V

ṽ · χv(ρ,p)

d∑

i=1

vi∂ui
H(t, u).

We say that the solution (ρ,p) has finite energy if its components belong to L2([0, T ],H 1(Dd)):

∫ T

0
ds

(∫

Dd

‖∇ρ(s,u)‖2du

)
< ∞,

and
∫ T

0
ds

(∫

Dd

‖∇pk(s, u)‖2du

)
< ∞,

for k = 1, . . . , d , where ∇f represents the generalized gradient of the function f .
In [12] the following theorem was proved:

Theorem 3.1 Let (μN)N be a sequence of probability measures on XN associated to the
profile (ρ0,p0) in the sense of Theorem 2.1. Then, for every t ≥ 0, for every continuous
function H : Dd → R vanishing at the boundary �, and for every δ > 0,

lim
N→∞

PμN

[∣∣∣∣
1

Nd

∑

x∈Dd
N

H

(
x

N

)
I0(ηx(t)) −

∫

Dd

H(u)ρ(t, u)du

∣∣∣∣ > δ

]
= 0,
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and for 1 ≤ k ≤ d

lim
N→∞

PμN

[∣∣∣∣
1

Nd

∑

x∈Dd
N

H

(
x

N

)
Ik(ηx(t)) −

∫

Dd

H(u)pk(t, u)du

∣∣∣∣ > δ

]
= 0,

where (ρ,p) has finite energy and is the unique weak solution of (3.2).

4 The Rate Function IT (·|γ )

We examine in this section the rate function IT (·|γ ). The main result, presented in Theo-
rem 4.6 below, states that IT (·|γ ) has compact level sets. The proof relies on two ingredi-
ents. The first one, stated in Lemma 4.2, is an estimate of the energy and of the H−1 norm
of the time derivative of a trajectory in terms of the rate function. The second one, stated in
Lemma 4.5, establishes that sequences of trajectories, with rate function uniformly bounded,
which converge weakly in L2 converge in fact strongly. We follow the strategy introduced
in [9].

Let V be an open neighborhood of Dd , and consider, for each v ∈ V , smooth func-
tions κv

k : V → (0,1) in C2(V ), for k = 0, . . . , d . We assume that the restriction of
κ = ∑

v∈V (κv
0 , v1κ

v
1 , . . . , vdκ

v
d ) to {0} × T

d−1 equals the vector valued function a(·) defined
in (3.1), and that the restriction of κ to {1} × T

d−1 equals the vector valued function b(·),
also defined in (3.1), in the sense that κ(x) = d(x1, x̃) if x ∈ {0,1} × T

d−1.
Let L2(Dd) be the Hilbert space of functions G : Dd → R such that

∫
Dd |G(u)|2du < ∞

equipped with the inner product

〈G,F 〉2 =
∫

�

G(u)F (u)du,

and the norm of L2(Dd) is denoted by ‖ · ‖2.
Recall that H 1(Dd) is the Sobolev space of functions G with generalized derivatives

∂u1G, . . . , ∂ud
G in L2(Dd). H 1(Dd) endowed with the scalar product 〈·, ·〉1,2, defined by

〈G,F 〉1,2 = 〈G,F 〉2 +
d∑

j=1

〈∂uj
G, ∂uj

F 〉2,

is a Hilbert space. The corresponding norm is denoted by ‖ · ‖1,2.
Recall also that we denote by C∞

c (Dd) the set of infinitely differentiable functions
G : Dd → R, with compact support in Dd . Denote by H 1

0 (Dd) the closure of C∞
c (Dd)

in H 1(Dd). Since Dd is bounded, by Poincaré’s inequality, there exists a finite constant C

such that for all G ∈ H 1
0 (Dd)

‖G‖2
2 ≤ C

d∑

j=1

〈∂uj
G, ∂uj

G〉2.

This implies that, in H 1
0 (Dd)

‖G‖1,2,0 =
{ d∑

j=1

〈∂uj
G, ∂uj

G〉2

}1/2
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is a norm equivalent to the norm ‖ · ‖1,2. Moreover, H 1
0 (Dd) is a Hilbert space with inner

product given by

〈G, J 〉1,2,0 =
d∑

j=1

〈∂uj
G, ∂uj

J 〉2.

To assign boundary values along the boundary � of Dd to any function G in H 1(Dd), re-
call, from the trace Theorem [15, Theorem 21.A.(e)], that there exists a continuous linear op-
erator Tr : H 1(Dd) → L2(�), called trace, such that Tr(G) = G|� if G ∈ H 1(Dd) ∩ C(Dd).
Moreover, the space H 1

0 (Dd) is the space of functions G in H 1(Dd) with zero trace [15,
Appendix (48b)]:

H 1
0 (Dd) = {G ∈ H 1(Dd); Tr(G) = 0}.

Finally, denote by H−1(Dd) the dual of H 1
0 (Dd). H−1(Dd) is a Banach space with norm

‖ · ‖−1 given by

‖v‖2
−1 = sup

G∈C∞
c (Dd )

{
2〈v,G〉−1,1 −

∫

Dd

‖∇G(u)‖2du

}
,

where 〈v,G〉−1,1 stands for the values of the linear form v at G.
For each G ∈ C∞

c (�T ) and each integer 1 ≤ i ≤ d , let QG
i,k : D([0, T ], M0) → R be the

functional given by

QG
i,k(π) = 2

∫ T

0
dt〈πk

t , ∂ui
Gt 〉 −

∫ T

0
dt

∫

Dd

duG(t, u)2,

where π = (π0,π1, . . . , πd). Recall, from Sect. 2.2, that the energy Q(π) is given by

Q(π) =
d∑

k=0

d∑

i=1

Qi,k(π), with Qi,k(π) = sup
G∈C∞

c (�T )

QG
i,k(π).

The functional QG
i,k is convex and continuous in the Skorohod topology. Therefore Qi,k

and Q are convex and lower semicontinuous. Furthermore, it is well known that a measure
π(t, du) = (ρ,p)(t, u)du in D([0, T ], M+ × Md) has finite energy, Q(π) < ∞, if and
only if its density ρ and its momentum p belong to L2([0, T ],H 1(Dd)). In which case

Q(π) :=
d∑

k=0

∫ T

0
dt

∫

Dd

du ‖∇pk,t (u)‖2 < ∞,

where p0,t (u) = ρ(t, u).
Let Dγ = Dγ,d be the subset of C([0, T ], M0) consisting of all paths π(t, du) =

(ρ,p)(t, u)du with initial profile γ (·) = (ρ0,p0)(·), finite energy Q(π) (in which case ρt

and pt belong to H 1(Dd) for almost all 0 ≤ t ≤ T and so Tr(ρt ) is well defined for those t )
and such that Tr(ρt ) = d0 and Tr(pk,t ) = dk , k = 1, . . . , d , for almost all t in [0, T ], where
d(·) = (d0(·), d1(·), . . . , dd(·)).

Lemma 4.1 Let π be a trajectory in D([0, T ], M+ × Md) such that IT (π |γ ) < ∞. Then
π belongs to Dγ .
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Proof Fix a path π in D([0, T ], M+ × Md) with finite rate function, IT (π |γ ) < ∞. By
definition of IT , π belongs to D([0, T ], M0). Denote its density and momentum by (ρ,p):
π(t, du) = (ρ,p)(t, u)du.

The proof that (ρ,p)(0, ·) = γ (·) is similar to the one of Lemma 3.5 in [6], and the proof
that Tr(ρt ) = d0, Tr(pk,t ) = dk , k = 1, . . . , d , is similar to the one found in Lemma 4.1 in [9].

We deal now with the continuity of π . We claim that there exists a positive constant C0

such that, for any g ∈ [C∞
c (Dd)]d+1, and any 0 ≤ s < r < T ,

|〈πr, g〉 − 〈πs, g〉| ≤ C0(r − s)1/2{C1 + IT (π |γ ) + ‖g‖2
1,2,0 + (r − s)1/2‖�g‖1}. (4.1)

Indeed, for each δ > 0, let ψδ : [0, T ] → R be the function given by

(r − s)1/2ψδ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if 0 ≤ t ≤ s or r + δ ≤ t ≤ T ,
t−s
δ

if s ≤ t ≤ s + δ,

1 if s + δ ≤ t ≤ r,

1 − t−r
δ

if r ≤ t ≤ r + δ,

and let Gδ
ε(t, u) = ψδ

ε (t)g(u), where ψδ
ε (·) is the standard ε-mollification of ψδ(·). Since

Gδ
ε is in C

1,2
0 (�T ), we have

(r − s)1/2 lim
δ→0

lim
ε→0

JGδ
ε
(π) = 〈πr, g〉 − 〈πs, g〉 −

∫ r

s

dt〈πt ,�g〉

+
∫ s

r

dt

∫

Dd

du
∑

v∈V

ṽ · χv(ρ,p)

d∑

i=1

vi∂ui
g(u)

− 1

(r − s)1/2

∫ r

s

dt

∫

Dd

du
∑

v∈V

(
d∑

k=0

vk∂ui
gk(u)

)2

χv(ρ,p).

To conclude the proof, we observe that the left-hand side is bounded by (r −
s)1/2IT (π |γ ), that χ is positive and bounded above on [0,1] by 1/4, and finally, we use
the elementary inequality 2ab ≤ a2 + b2. �

Denote by L2([0, T ],H 1
0 (Dd))∗ the dual of L2([0, T ],H 1

0 (Dd)). By Proposition 23.7
in [15], L2([0, T ],H 1

0 (Dd))∗ corresponds to L2([0, T ],H−1(Dd)) and for v in L2([0, T ],
H 1

0 (Dd))∗, G in L2([0, T ],H 1
0 (Dd)),

〈〈v,G〉〉−1,1 =
∫ T

0
〈vt ,Gt 〉−1,1 dt, (4.2)

where the left hand side stands for the value of the linear functional v at G. Moreover, if we
denote by |||v|||−1 the norm of v,

|||v|||2−1 =
∫ T

0
‖vt‖2

−1 dt.

Fix a path π(t, du) = (ρ,p)(t, u)du in Dγ and suppose that for k = 0, . . . , d

sup
G∈C∞

c (�T )

{
2
∫ T

0
dt〈pk,t , ∂tGt 〉2 −

∫ T

0
dt

∫

Dd

du‖∇Gt‖2

}
< ∞. (4.3)
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In this case, for each k, ∂tpk : C∞
c (�T ) → R defined by

∂tpk(G) = −
∫ T

0
〈pk,t , ∂tGt 〉2 dt

can be extended to a bounded linear operator ∂tpk : L2([0, T ],H 1
0 (Dd)) → R. It belongs

therefore to L2([0, T ],H 1
0 (Dd))∗ = L2([0, T ],H−1(Dd)). In particular, there exists vk =

{vk
t ;0 ≤ t ≤ T } in L2([0, T ],H−1(Dd)), which we denote by vk

t = ∂tpk,t , such that for any
G in L2([0, T ],H 1

0 (Dd)),

〈〈∂tpk,G〉〉−1,1 =
∫ T

0
〈∂tpk,t ,Gt 〉−1,1 dt.

Moreover,

|||∂tpk|||2−1 =
∫ T

0
‖∂tpk,t‖2

−1 dt

= sup
G∈C∞

c (�T )

{
2
∫ T

0
dt〈pk,t , ∂tGt 〉2 −

∫ T

0
dt

∫

Dd

du‖∇Gt‖2

}
.

Denote by 〈〈∂t (ρ,p), ·〉〉−1,1 : L2([0, T ], [H 1
0 (Dd)]d+1) → R the linear functional given

by

〈〈∂t (ρ,p),G〉〉−1,1 =
d∑

k=0

〈〈∂tpk,G
k〉〉−1,1,

with G = (G0, . . . ,Gd), and

|||∂t (ρ,p)|||2−1 =
d∑

k=0

|||∂tpk|||2−1.

Let W be the set of paths π(t, du) = (ρ,p)(t, u)du in Dγ such that (4.3) holds, i.e., such
that ∂tpk belongs to L2([0, T ],H−1(Dd)). For G in L2([0, T ], [H 1

0 (Dd)]d+1), let JG : W →
R be the functional given by

JG(π) = 〈〈∂t (ρ,p),G〉〉−1,1 + 1

2

∫ T

0
dt

∫

Dd

du

d∑

i=1

∂ui
(ρ,p)(t, u) · ∂ui

G(t, u)

+
∫ T

0
dt

∫

Dd

du
∑

v∈V

ṽ · χv(ρ,p)

d∑

i=1

vi∂ui
G(t, u)

−
∫ T

0
dt

∫

Dd

du
∑

v∈V

(ṽ · ∂ui
Gt (u))2χv(ρ,p),

Note that JG(π) = JG(π) for every G in C∞
c (�T ) × [C∞

c (Dd)]d . Moreover, since J·(π)

is continuous in L2([0, T ], [H 1
0 (Dd)]d+1) and since C∞

c (�T ) is dense in C 1,2
0 (�T ) and in

L2([0, T ], H 1
0 (Dd)), for every π in W ,

IT (π |γ ) = sup
G∈C∞

c (�T )×[C∞
c (Dd )]d

JG(π) = sup
G∈L2([0,T ],[H 1

0 (Dd )]d+1)

JG(π). (4.4)
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Lemma 4.2 There exists a constant C0 > 0 such that if the density and momentum (ρ,p) of
some path π(t, du) = (ρ,p)(t, u)du in D([0, T ], M0) has generalized gradients, ∇ρ and
∇pk , k = 1, . . . , d . Then

|||∂t (ρ,p)|||2−1 ≤ C0{IT (π |γ ) + Q(π)}, (4.5)

d∑

k=0

∫ T

0
dt

∫

Dd

du‖∇pk(t, u)‖2 ≤ C0{IT (π |γ ) + 1}, (4.6)

where p0 = ρ.

Proof Fix a path π(t, du) = (ρ,p)(t, u)du in D([0, T ], M0). In view of the discussion
presented before the lemma, we need to show that the left hand side of (4.3) is bounded by
the right hand side of (4.5). Such an estimate follows from the definition of the rate function
IT (·|γ ) and from the elementary inequality 2ab ≤ Aa2 + A−1b2.

To prove (4.6), observe that

IT (π |γ ) ≥ JG(π) = ∂tπ(G) + 1

2

∫ T

0
dt

∫

Dd

du

d∑

i=1

∂ui
(ρ,p) · ∂ui

G

+
∫ T

0
dt

∫

Dd

du
∑

v∈V

χv(ρ,p)

d∑

i=1

ṽ · (vi∂ui
G)

−
∫ T

0
dt

∫

Dd

du
∑

v∈V

d∑

i=1

(ṽ · ∂ui
G)2χv(ρ,p)

≥ ∂tπ(G) + 1

2

∫ T

0
dt

∫

Dd

du

d∑

i=1

∂ui
(ρ,p) · ∂ui

G − C

∫ T

0
dt

∫

Dd

du

d∑

k=0

‖∇Gk‖2,

where C is constant obtained from the elementary inequality 2ab ≤ a2 + b2, the fact that V
is finite, and that χ is bounded above by 1/4 in [0,1].

Recall the definition of the function κ given at the beginning of Sect. 4. Now, consider
G = K(π −κ), K > 0 being a constant, and note that π −κ belongs to L2([0, T ],H 1

0 (Dd)),
which implies that it may be approximated by C∞

c functions. Therefore |∂tπ(G)| =
K|〈πT ,πT /2 − κ〉 − 〈π0,π0/2 − κ〉|, which is bounded from above by some constant C1.
We, then, obtain that

I (π) ≥
∫ T

0
dt

∫

Dd

du

{
−C1 + K

2

d∑

k=0

‖∇pk‖2 − K

2

d∑

i=1

∂ui
(ρ,p) · ∂ui

κ

− CK2
d∑

k=0

‖∇(pk − κk)‖2

}

≥
∫ T

0
dt

∫

Dd

du

{
(K/4 − 2CK2)

d∑

k=0

‖∇pk‖2 − K

4

d∑

k=0

‖∇κk‖2

− 2CK2
d∑

k=0

‖∇κk‖2 − C1

}
,
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where in the last inequality we used the Cauchy-Schwartz inequality and the elementary
inequality 2ab ≤ a2 + b2. The proof thus follows from choosing a suitable K , the estimate
given in (4.5), and the fact we have a fixed smooth function κ . �

Corollary 4.3 The density (ρ,p) of a path π(t, du) = (ρ,p)(t, u)du in D([0, T ], M0)

is the weak solution of (3.2) and initial profile γ if and only if the rate function IT (π |γ )

vanishes. Moreover, if any of the above conditions hold, π has finite energy (Q(π) < ∞).

Proof On the one hand, if the density (ρ,p) of a path π(t, du) = (ρ,p)(t, u)du in
D([0, T ], M0) is the weak solution of (3.2) with initial condition is γ , in the formula
of ĴG(π), the linear part in G vanishes which proves that the rate functional IT (π |γ )

vanishes. On the other hand, if the rate functional vanishes, the path (ρ,p) belongs to
L2([0, T ], [H 1(Dd)]d+1) and the linear part in G of JG(π) has to vanish for all functions G.
In particular, (ρ,p) is a weak solution of (3.2). Moreover, if the rate function is finite, by
the previous lemma, π has finite energy. Accordingly, if π is a weak solution, we have from
Theorem 3.1 that it has finite energy. �

For each q > 0, let Eq be the level set of IT (π |γ ) defined by

Eq = {π ∈ D([0, T ], M+ × Md); IT (π |γ ) ≤ q}.
By Lemma 4.1, Eq is a subset of C([0, T ], M0). Thus, from the previous lemma, it is easy
to deduce the next result.

Corollary 4.4 For every q ≥ 0, there exists a finite constant C(q) such that

sup
π∈Eq

{
|||∂t (ρ,p)|||2−1 +

d∑

k=0

∫ T

0
dt

∫

Dd

du‖∇pk(t, u)‖2

}
≤ C(q).

Next result together with the previous estimates provide the compactness needed in the
proof of the lower semicontinuity of the rate function.

Lemma 4.5 Let {ρn;n ≥ 1} be a sequence of functions in L2(�T ) such that uniformly on n,

∫ T

0
dt‖ρn

t ‖2
1,2 +

∫ T

0
dt‖∂tρ

n
t ‖2

−1 ≤ C

for some positive constant C. Suppose that ρ ∈ L2(�T ) and that ρn → ρ weakly in L2(�T ).
Then ρn → ρ strongly in L2(�T ).

Proof Since H 1(Dd) ⊂ L2(Dd) ⊂ H−1(Dd) with compact embedding H 1(Dd) → L2(Dd),
from Corollary 8.4, [13], the sequence {ρn} is relatively compact in L2([0, T ],L2(Dd)).
Therefore the weak convergence implies the strong convergence in L2([0, T ],L2(Dd)). �

Theorem 4.6 The functional IT (·|γ ) is lower semicontinuous and has compact level sets.

Proof We have to show that, for all q ≥ 0, Eq is compact in D([0, T ], M+ × Md). Since
Eq ⊂ C([0, T ], M0) and C([0, T ], M0) is a closed subset of D([0, T ], M), we just need to
show that Eq is compact in C([0, T ], M0).
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We will show first that Eq is closed in C([0, T ], M0). Fix q ∈ R and let {πn; n ≥ 1}
be a sequence in Eq converging to some π in C([0, T ], M0). Then, for all G ∈ C(�T ) ×
[C(Dd)]d ,

lim
n→∞

∫ T

0
dt〈πn

t ,Gt 〉 =
∫ T

0
dt〈πt ,Gt 〉.

Notice that this means that πn,k → πk weakly in L2(�T ), for each k = 0, . . . , d , which
together with Corollary 4.4 and Lemma 4.5 imply that πn,k → πk strongly in L2(�T ). From
this fact and the definition of JG it is easy to see that, for all G in C

1,2
0 (�T ),

lim
n→∞JG(πn) = JG(π).

This limit, Corollary 4.4 and the lower semicontinuity of Q permit us to conclude that
Q(π) ≤ C(q) and that IT (π |γ ) ≤ q .

We prove now that Eq is relatively compact. To this end, it is enough to prove that for
every continuous function G : Dd → R, and every k = 0, . . . , d ,

lim
δ→0

sup
π∈Eq

sup
0≤s,r≤T
|r−s|<δ

|〈πk
r ,G〉 − 〈πk

s ,G〉| = 0. (4.7)

Since Eq ⊂ C([0, T ], M0), we may assume by approximations of G in L1(Dd) that G ∈
C∞

c (Dd). In which case, (4.7) follows from (4.1). �

We conclude this section with an explicit formula for the rate function IT (·|γ ). For each
π(t, du) = (ρ,p)(t, u)du in D([0, T ], M0), denote by H 1

0 (π) the Hilbert space induced by
C

1,2
0 (�T ) endowed with the inner product 〈·, ·〉π defined by

〈H,G〉π =
∑

v∈V

d∑

i=1

∫ T

0
dt

∫

Dd

duχv(ρ,p)[ṽ · ∂ui
H ][ṽ · ∂ui

G]. (4.8)

Induced means that we first declare two functions F,G in C
1,2
0 (�T ) to be equivalent if

〈F − G,F − G〉π = 0, and then we complete the quotient space with respect to the inner
product 〈·, ·〉π . The norm of H 1

0 (π) is denoted by ‖ · ‖π .
Fix a path π in D([0, T ], M0) and a function H in H 1

0 (π). A measurable function λ :
[0, T ] × Dd → R+ × R

d is said to be a weak solution of the nonlinear boundary value
parabolic equation

⎧
⎪⎨

⎪⎩

∂tλ + ∑d

i=1

∑
v∈V ṽ∂ui

[χv(λ)(vi − ṽ · ∂ui
H)] = 1

2�λ,

λ(0, ·) = γ (·),
λ(t, x) = d(x), x ∈ {0,1} × T

d−1,

(4.9)

if it satisfies the following two conditions:

(i) For k = 0, . . . , d , λk belongs to L2([0, T ],H 1(Dd)):

∫ T

0
ds

(∫

Dd

‖∇λk(s, u)‖2du

)
< ∞;
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(ii) For every function G(t,u) = Gt(u) in C
1,2
0 (�T ),

∫

Dd

G(T ,u) · λ(T ,u)du −
∫

Dd

G(0, u) · γ (u)du

=
∫ T

0
dt

∫

Dd

du

{
λ(t, u) · ∂tG(t, u) + 1

2
λ(t, u) ·

d∑

i=1

∂2
ui

G(t, u)

}

− 1

2

∫ T

0
dt

∫

{1}×Td−1
dSb(ũ) · ∂u1G(t,u) + 1

2

∫ T

0
dt

∫

{0}×Td−1
dSa(ũ) · ∂u1G(t,u)

−
∫ T

0
dt

∫

Dd

du
∑

v∈V

ṽ · χv(λ)

d∑

i=1

vi∂ui
G(t, u)

+
∑

v∈V

d∑

i=1

∫ T

0
dt

∫

Dd

duχv(λ)[ṽ · ∂ui
H ][ṽ · ∂ui

G].

Uniqueness of solutions of (4.9) follows from the same arguments of the uniqueness
proved in [12].

Lemma 4.7 Assume that π(t, du) = (ρ,p)(t, u)du in D([0, T ], M0) has finite rate func-
tion: IT (π |γ ) < ∞. Then, there exists a function H in H 1

0 (π) such that (ρ,p) is a weak
solution to (4.9). Moreover,

IT (π |γ ) = 1

4
‖H‖2

π . (4.10)

The proof of this lemma is similar to the one of Lemma 10.5.3 in [10] and is therefore
omitted.

5 IT (·|γ )-Density

The main result of this section, stated in Theorem 5.5, asserts that any trajectory λt , 0 ≤ t ≤
T , with finite rate function, IT (λ|γ ) < ∞, can be approximated by a sequence of smooth
trajectories {λn;n ≥ 1} such that

λn → λ and IT (λn|γ ) → IT (λ|γ ).

This is one of the main steps in the proof of the lower bound of the large deviations principle
for the empirical measure. The proof is mainly based on the regularizing effects of the
hydrodynamic equation. This strategy was introduced in [9].

A subset A of D([0, T ], M+ × Md) is said to be IT (·|γ )-dense if for every π in
D([0, T ], M+ × Md) such that IT (π |γ ) < ∞, there exists a sequence {πn;n ≥ 1} in A

such that πn converges to π and IT (πn|γ ) converges to IT (π |γ ).
Let �1 be the subset of D([0, T ], M0) consisting of paths π(t, du) = (ρ,p)(t, u)du

whose density (ρ,p) is a weak solution of the hydrodynamic equation (3.2) in the time
interval [0, δ] for some δ > 0.

Lemma 5.1 The set �1 is IT (·|γ )-dense.



674 J. Farfan et al.

Proof Fix π(t, du) = (ρ,p)(t, u)du in D([0, T ], M+ × Md) such that IT (π |γ ) < ∞. By
Lemma 4.1, π belongs to C([0, T ], M0). For each δ > 0, let (ρδ,pδ) be the path defined as

(ρδ,pδ)(t, u) =

⎧
⎪⎨

⎪⎩

τ(t, u) if 0 ≤ t ≤ δ,

τ (2δ − t, u) if δ ≤ t ≤ 2δ,

(ρ,p)(t − 2δ,u) if 2δ ≤ t ≤ T ,

where τ is the weak solution of the hydrodynamic equation (3.2) starting at γ . It is
clear that πδ(t, du) = (ρδ,pδ)(t, u)du belongs to Dγ , because so do π and τ and that
Q(πδ) ≤ Q(π) + 2Q(τ ) < ∞. Moreover, πδ converges to π as δ ↓ 0 because π belongs to
C([0, T ], M0). By the lower semicontinuity of IT (·|γ ), IT (π |γ ) ≤ limδ→0 IT (πδ|γ ). Then,
in order to prove the lemma, it is enough to prove that IT (π |γ ) ≥ limδ→0 IT (πδ|γ ). To
this end, decompose the rate function IT (πδ|γ ) as the sum of the contributions on each
time interval [0, δ], [δ,2δ] and [2δ, T ]. The first contribution vanishes because πδ solves
the hydrodynamic equation in this interval. On the time interval [δ,2δ], ∂tρ

δ
t = −∂t τ2δ−t =

− 1
2�τ2δ−t +∑

v∈V ṽ[v · ∇χv(τ2δ−t )] = − 1
2�(ρδ

t ,p
δ
t ) +∑

v∈V ṽ[v · ∇χv(ρ
δ
t ,p

δ
t )]. In partic-

ular, the second contribution is equal to

sup
G∈C

1,2
0 (�T )

d∑

i=1

{∫ δ

0
ds

∫

Dd

du ∂ui
(ρ,p) · ∂ui

G −
∑

v∈V

∫ δ

0
dt

∫

Dd

duχv(ρ,p)[ṽ · ∂ui
G]2

}

which, by Lemma 6.5 is bounded from above, and therefore this last expression converges
to zero as δ ↓ 0. Finally, the third contribution is bounded by IT (π |γ ) because πδ in this
interval is just a time translation of the path π . �

Recall the definition of the set U given at the ending of Sect. 2.2. Let �2 be the set of
all paths π in �1 with the property that for every δ > 0 there exists ε > 0 such that, for
k = 0, . . . , d , d(πk

t (·), ∂U) ≥ ε for all t ∈ [δ, T ], where ∂U stands for the boundary of U.
We begin by proving an auxiliary lemma.

Lemma 5.2 Let π,λ ∈ U, and let πε = (1 − ε)π + ελ, 0 ≤ ε ≤ 1. Then, for all v ∈ V , we
have

θv(�(πε)) = (1 − ε)θv(�(π)) + εθv(�(λ)).

Proof Fix some λ ∈ U. Observe that
(∑

v∈V

θv(�(λ)),
∑

v∈V

v1θv(�(λ)), . . . ,
∑

v∈V

vdθv(�(λ))

)
= (λ0, λ1, . . . , λd)

is a linear system with d + 1 equations and |V| unknowns (given by θv(�(λ)), for v ∈ V ).
Therefore, any solution of this linear system can be expressed as a linear combination of λi ,
i = 0,1, . . . , d . The proof follows from this fact. �

Remark 5.3 In the particular case when d = 1 and the set of velocities is V = {v,−v} ⊂ R,
a simple computation gives the unique solution

θv(�(λ0, λ1)) = λ0

2
+ λ1

2v
and θ−v(�(λ0, λ1)) = λ0

2
− λ1

2v
.
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Lemma 5.4 The set �2 is IT (·|γ )-dense.

Proof By Lemma 5.1, it is enough to show that each path π(t, du) = (ρ,p)(t, u)du in �1

can be approximated by paths in �2. Fix π in �1 and let τ be as in the proof of the previous
lemma. For each 0 < ε < 1, let (ρε,pε) = (1− ε)(ρ,p)+ ετ , πε(t, du) = (ρε,pε)(t, u)du.
Note that Q(πε) < ∞ because Q is convex and both Q(π) and Q(τ ) are finite. Hence, πε

belongs to Dγ since both ρ and τ satisfy the boundary conditions. Moreover, It is clear that
πε converges to π as ε ↓ 0. By the lower semicontinuity of IT (·|γ ), in order to conclude the
proof, it is enough to show that

lim
N→∞

IT (πε|γ ) ≤ IT (π |γ ). (5.1)

By Lemma 4.7, there exists H ∈ H 1
0 (π) such that (ρ,p) solves (4.9). Let Pi,v(π) =

χv(ρ,p)(ṽ · ∂ui
H − vi), and note that Pi,v(τ ) = −viχv(τ ). Let also

P ε
i,v = (1 − ε)Pi,v(π) + εPi,v(τ ).

Observe that, by Lemma 4.7,

IT (π |γ ) = 1

4
‖H‖2

π ,

and that, using the definition of ‖ · ‖π in (4.8),

1

4
‖H‖2

π = 1

4

∑

v∈V

d∑

i=1

∫ T

0
dt

∫

Dd

duχv(ρ,p)(ṽ · ∂ui
H)2

= 1

4

∑

v∈V

d∑

i=1

∫ T

0
dt

∫

Dd

du
(Pi,v(π) + viχv(ρ,p))2

χv(ρ,p)
.

A simple computation shows that

JG(πε) =
∑

v∈V

d∑

i=1

∫ T

0

∫

Dd

[P ε
i,v + χv(ρ

ε,pε)vi](ṽ · ∂ui
G) − χv(ρ

ε,pε)(ṽ · ∂ui
G)2

= 1

4

∑

v∈V

d∑

i=1

∫ T

0
dt

∫

Dd

du
[P ε

i,v + χv(ρ
ε,pε)vi]2

χv(ρε,pε)

−
(

1

2

P ε
i,v + χv(ρ

ε,pε)√
χv(ρε,pε)

− √
χv(ρ,p)(ṽ · ∂ui

G)

)2

.

Let

Aε = 1

4

∑

v∈V

d∑

i=1

∫ T

0
dt

∫

Dd

du
[P ε

i,v + χv(ρ
ε,pε)vi]2

χv(ρε,pε)
,

and

Bε(G) =
∫ T

0
dt

∫

Dd

du

(
1

2

P ε
i,v + χv(ρ

ε,pε)√
χv(ρε,pε)

− √
χv(ρ,p)(ṽ · ∂ui

G)

)
.
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This implies that

IT (πε |γ ) = sup
G

JG(πε) = sup
G

{Aε − Bε(G)2} = Aε − inf
G

Bε(G)2 ≤ Aε,

where the supremum and infimum are taken over in G in C∞
c (�T ) × [C∞

c (Dd)]d .
It remains to be shown that Aε is uniformly integrable in ε. However, this is a simple

consequence of Lemma 5.2. �

Let � be the subset of �2 consisting of all those paths π which are solutions of (4.9) for
some H ∈ C

1,2
0 (�T ).

Theorem 5.5 The set � is IT (·|γ )-dense.

Proof By the previous lemma, it is enough to show that each path π in �2 can be approx-
imated by paths in �. Fix π(t, du) = (ρ,p)(t, u)du in �2. By Lemma 4.7, there exists
H ∈ H 1

0 (π) such that (ρ,p) solves (4.9). Since π belongs to �2 ⊂ �1, (ρ,p) is the weak
solution of (3.2) in some time interval [0,2δ] for some δ > 0. In particular, ṽ ·∂ui

H = 0 a.e in
[0,2δ] × Dd , i = 1, . . . , d , v ∈ V . This implies, by (2.1), that ∇Hk = 0 a.e. in [0,2δ] × Dd ,
k = 0, . . . , d . On the other hand, since π belongs to �1, there exists ε > 0 such that, for
k = 0, . . . , d , d(πk

t (·), ∂U) ≥ ε for δ ≤ t ≤ T . Therefore,

∫ T

0
dt

∫

Dd

‖∇Hk
t (u)‖2 du < ∞, k = 0, . . . , d. (5.2)

Since H belongs to H 1
0 (π), there exists a sequence of functions {Hn = (Hn,1, . . . ,Hn,d);

n ≥ 1} in C
1,2
0 (�T ) converging to H in H 1

0 (π). We may assume of course that ∇H
n,k
t ≡ 0 in

the time interval [0, δ], k = 0, . . . , d . In particular,

lim
n→∞

∫ T

0
dt

∫

Dd

du‖∇Hn,k
t (u) − ∇Hk

t (u)‖2 = 0, k = 0, . . . , d. (5.3)

For each integer n > 0, let (ρn,pn) be the weak solution of (4.9) with Hn in place of H

and set πn(t, du) = (ρn,pn)(t, u)du. By (4.10) and since χ is bounded above in [0,1] by
1/4, we have that

IT (πn|γ ) = 1

2

∑

v∈V

d∑

i=1

∫ T

0
dt〈χv(ρ

n
t ,pn

t ), (ṽ · ∂ui
Hn

t )2〉2

≤ C0

∑

v∈V

d∑

i=1

∫ T

0
dt

∫

Dd

du(ṽ · ∂ui
Hn

t (u))2.

In particular, by (5.2) and (5.3), IT (πn|γ ) is uniformly bounded on n. Thus, by Theorem 4.6,
the sequence πn is relatively compact in D([0, T ], M+ × Md).

The sequence πn has a subsequence converging to some π0 in D([0, T ], M0). To keep
notation simple, we will assume that the sequence πn converges to π0. For every G in
C

1,2
0 (�T ),
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∫

Dd

G(T ,u) · (ρn
t ,pn

t )(T ,u)du −
∫

Dd

G(0, u) · γ (u)du

=
∫ T

0
dt

∫

Dd

du

{
(ρn

t ,pn
t )(t, u) · ∂tG(t, u) + 1

2
(ρn

t ,pn
t )(t, u) ·

d∑

i=1

∂2
ui

G(t, u)

}

− 1

2

∫ T

0
dt

∫

{1}×Td−1
dSb(ũ) · ∂u1G(t,u) + 1

2

∫ T

0
dt

∫

{0}×Td−1
dSa(ũ) · ∂u1G(t,u)

−
∫ T

0
dt

∫

Dd

du
∑

v∈V

ṽ · χv(ρ
n
t ,pn

t )

d∑

i=1

vi∂ui
G(t, u)

+
∑

v∈V

d∑

i=1

∫ T

0
dt

∫

Dd

duχv(ρ
n
t ,pn

t )[ṽ · ∂ui
Hn][ṽ · ∂ui

G].

Letting n → ∞ in this equation, we obtain the same equation with π0 and H in place of
πn and Hn, respectively, if

lim
n→∞

∫ T

0
dt

∫

Dd

du
∑

v∈V

ṽ · χv(ρ
n
t ,pn

t )

d∑

i=1

vi∂ui
G(t, u)

=
∫ T

0
dt

∫

Dd

du
∑

v∈V

ṽ · χv(ρ
0
t ,p

0
t )

d∑

i=1

vi∂ui
G(t, u),

(5.4)

lim
n→∞

∑

v∈V

d∑

i=1

∫ T

0
dt

∫

Dd

duχv(ρ
n
t ,pn

t )[ṽ · ∂ui
Hn][ṽ · ∂ui

G]

=
∑

v∈V

d∑

i=1

∫ T

0
dt

∫

Dd

duχv(ρ
0
t ,p

0
t )[ṽ · ∂ui

H ][ṽ · ∂ui
G].

We prove the second claim, the first one being simpler. Note first that we can replace Hn

by H in the previous limit, because χ is bounded in [0,1] by 1/4, and (5.3) holds. Now,
(ρn,pn) converges to (ρ0,p0) weakly in L2(�T ) × [L2(Dd)]d because πn converges to π0

in D([0, T ], M0). Since IT (πn|γ ) is uniformly bounded, by Corollary 4.4 and Lemma 4.5,
(ρn,pn) converges to (ρ0,p0) strongly in L2(�T ) × [L2(Dd)]d which implies (5.4). In
particular, since (5.2) holds, by uniqueness of weak solutions of (4.9), π0 = π and we are
done. �

6 Large Deviations

We prove in this section Theorem 2.1, which is the dynamical large deviations principle for
the empirical measure of boundary driven stochastic lattice gas model with many conserved
quantities. The proof uses some of the ideas introduced in [9].

6.1 Superexponential Estimates

It is well known that one of the main steps in the derivation of the upper bound is a super-
exponential estimate which allows the replacement of local functions by functionals of the
empirical density in the large deviations regime.
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Let κ be as in the beginning of Sect. 4. Note that since νN
κ is not the invariant state,

there are no reasons for 〈−N2 LNf,f 〉νN
κ

to be positive. The next statement shows that this
expression is almost positive.

For each function f : XN → R, let DνN
κ
(f ) be

DνN
κ
(f ) = Dex

νN
κ
(f ) + Dc

νN
κ
(f ) + Db

νN
κ
(f ),

where

Dex

νN
κ
(f ) =

∑

v∈V

∑

x∈Dd
N

∑

x+z∈Dd
N

PN(z − x, v)

∫ [√
f (ηx,z,v) − √

f (η)
]2

νn
κ (dη),

Dc

νN
κ
(f ) =

∑

q∈Q

∑

x∈Dd
N

∫
p(x, q, η)

[√
f (ηx,q) − √

f (η)
]2

νN
κ (dη),

and

Db

νN
κ
(f ) =

∑

v∈V

∑

x∈{1}×T
d−1
N

∫
[αv(x̃/N)(1 − η(x, v)) + (1 − αv(x̃/N))η(x, v)]

× [√
f (σ x,vη) − √

f (η)
]2

νN
κ (dη)

+
∑

v∈V

∑

x∈{N−1}×T
d−1
N

∫
[βv(x̃/N)(1 − η(x, v)) + (1 − βv(x̃/N))η(x, v)]

× [√
f (σ x,vη) − √

f (η)
]2

νN
κ (dη).

Proposition 6.1 There exist constants C1 > 0 and C2 = C2(α,β) > 0 such that for every
density f with respect to νN

κ , we have

〈LN

√
f ,

√
f 〉νN

κ
≤ −C1DνN

κ
(f ) + C2N

d−2.

The proof of this proposition is elementary and is thus omitted.
Further, we may choose κ for which there exists a constant θ > 0 such that:

κ(u1, ũ) = d(0, ũ) if 0 ≤ u1 ≤ θ,

κ(u1, ũ) = d(1, ũ) if 1 − θ ≤ u1 ≤ 1,

for all ũ ∈ T
d−1. In that case, for every N large enough, νN

κ is reversible for the process with
generator Lb

N and then 〈−N2 Lb
Nf,f 〉νN

κ
is positive.

Fix L ≥ 1 and a configuration η, let IL(x, η) := IL(x) = (IL
0 (x), . . . , IL

d (x)) be the av-
erage of the conserved quantities in a cube of the length L centered at x:

IL(x) = 1

|�L|
∑

z∈x+�L

I (ηz),

where, �L = {−L, . . . ,L}d and |�L| = (2L + 1)d is the discrete volume of box �L.
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For each G ∈ C(�T ) × [C(Dd)]d , and each ε > 0, let

V
G,1
Nε (s, η) = 1

Nd

d∑

k=0

d∑

i,j=1

∑

x∈Dd
N

∂ui
Gk(s, x/N)[τxṼ

j,k

Nε ],

where

Ṽ
j,k

Nε (η) = 1

(2� + 1)d

∑

y∈�Nε

∑

v∈V

vk

∑

z∈Zd

p(z, v)zj τy(η(0, v)[1 − η(z, v)])

−
∑

v∈V

vjvkχv(I
�(0)),

and let

V
G,2
Nε (s, η) = 1

2Nd

∑

v∈V

∑

x∈Dd
N

d∑

i=1

d∑

j,k=0

vkvj ∂
N
ui

G
j
t (x/N)∂N

ui
Gk

t (x/N)

× {
η(x, v)[1 − η(x + ei, v)] + η(x, v)[1 − η(x − ei, v)] − 2χv(I

�(0))
}
.

Let, again, G ∈ C(�T ) × [C(Dd)]d , and consider the quantities

V −
N (s, η,G) = 1

Nd−1

d∑

k=0

∑

x̃∈T
d−1
N

Gk(s, x̃/N)

(
Ik(η(1,x̃)(s)) −

∑

v∈V

vkαv(x̃/N)

)
,

and

V +
N (s, η,G) = 1

Nd−1

d∑

k=0

∑

x̃∈T
d−1
N

Gk(s, x̃/N)

(
Ik(η(N−1,x̃)(s)) −

∑

v∈V

vkβv(x̃/N)

)
.

Proposition 6.2 Fix G ∈ C(�T ) × [C(Dd)]d , H in C([0, T ] × �) × [C(�)]d , a cylinder
function � and a sequence {ηN ;N ≥ 1} of configurations with ηN in XN . For every δ > 0,

lim
ε→0

lim
N→∞

1

Nd
log PηN

[∣∣∣∣
∫ T

0
V

G,j

Nε (s, ηs) ds

∣∣∣∣ > δ

]
= −∞,

lim
N→∞

1

Nd
PηN

[∣∣∣∣
∫ T

0
V ±

N (s, η,G)

∣∣∣∣ > δ

]
= −∞,

for j = 1,2.

The proof of the above proposition follows from Proposition 6.1, the replacement lemmas
proved in [12], and the computation presented in [3], p. 78, for nonreversible processes.

For each ε > 0 and π in M+ × Md , for k = 0, . . . , d , denote by �ε(πk) = πε
k the ab-

solutely continuous measure obtained by smoothing the measure πk :

�ε(πk)(dx) = πε
k (dx) = 1

Uε

πk(�ε(x))

|�ε(x)| dx,
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where �ε(x) = {y ∈ Dd; |y −x| ≤ ε}, |A| stands for the Lebesgue measure of the set A, and
{Uε; ε > 0} is a strictly decreasing sequence converging to 1: Uε > 1, Uε > Uε′ for ε > ε′,
limε↓0 Uε = 1. Let

πN,ε = (
�ε(π

N
0 ),�ε(π

N
1 ), . . . ,�ε(π

N
d )

)
.

A simple computation shows that πN,ε belongs to M0 for N sufficiently large because
Uε > 1, and that for each continuous function H : Dd → R

d+1,

〈πN,ε,H 〉 = 1

Nd

∑

x∈Dd
N

H(x/N) · I εN (x) + O(N,ε),

where O(N,ε) is absolutely bounded by C0{N−1 +ε} for some finite constant C0 depending
only on H .

For each H in C
1,2
0 (�T ) consider the exponential martingale MH

t defined by

MH
t = exp

{
Nd

[
〈πN

t ,Ht 〉 − 〈πN
0 ,H0〉 − 1

Nd

∫ t

0
e−Nd 〈πN

s ,Hs 〉(∂s + N2 LN) eNd 〈πN
s ,Hs 〉 ds

]}
.

Recall from Sect. 2.2 the definition of the functional ĴH . An elementary computation shows
that

MH
T = exp

{
Nd

[
ĴH (πN,ε) + V

H
N,ε + c1

H (ε) + c2
H (N−1)

]}
. (6.1)

In this formula,

V
H
N,ε = −

∫ T

0
V

G,1
Nε (s, η) ds −

d∑

i=1

∫ T

0
V

G,2
Nε (s, η) ds

+ V +
N (s, η, ∂u1H) − V −

N (s, η, ∂u1H) + 〈πN
0 ,H0〉 − 〈γ,H0〉;

and c
j

H : R+ → R, j = 1,2, are functions depending only on H such that c
j

H (δ) converges
to 0 as δ ↓ 0. In particular, the martingale MH

T is bounded by exp{C(H,T )Nd} for some
finite constant C(H,T ) depending only on H and T . Therefore, Proposition 6.2 holds for
P

H

ηN = PηN MH
T in place of PηN .

6.2 Energy Estimates

To exclude paths with infinite energy in the large deviations regime, we need an energy
estimate. We state first the following technical result.

Lemma 6.3 There exists a finite constant C0, depending on T , such that for every G in
C∞

c (�T ), every integer 1 ≤ i ≤ d , 0 ≤ k ≤ d , and every sequence {ηN ;N ≥ 1} of configura-
tions with ηN in XN ,

lim
N→∞

1

Nd
log EηN

[
exp

{
Nd

∫ T

0
dt〈πN,k

t , ∂ui
G〉

}]
≤ C0

{
1 +

∫ T

0
‖Gt‖2

2 dt

}
.

The proof of this proposition follows from Lemma 3.8 in [12], and the fact that
dδηN /dνN

κ ≤ CNd
, for some positive constant C = C(κ).
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For each G in C∞
c (�T ) and each integer 1 ≤ i ≤ d , let Q̃G

i,k : D([0, T ], M+ × Md) → R

be the function given by

Q̃G
i,k(π) =

∫ T

0
dt〈πk

t , ∂ui
Gt 〉 − C0

∫ T

0
dt

∫

Dd

duG(t, u)2.

Notice that

sup
G∈C∞

c (�T )

{
Q̃G

i,k(π)
} = Qi,k(π)

4C0
. (6.2)

Fix a sequence {Gr; r ≥ 1} of smooth functions dense in L2([0, T ],H 1(Dd)). For any
positive integers m, l, let

Bk
m,l =

{
π ∈ D([0, T ], M+ × Md); max

1≤j≤m
1≤i≤d

Q̃Gj

i,k (π) ≤ l
}
.

Since, for fixed G in C∞
c (�T ) and 1 ≤ i ≤ d integer, the function Q̃G

i,k is continuous, Bm,l is
a closed subset of D([0, T ], M).

Lemma 6.4 There exists a finite constant C0, depending on T , such that for any positive
integers r, l and any sequence {ηN ;N ≥ 1} of configurations with ηN in XN ,

lim
N→∞

1

Nd
logQηN [(Bk

m,l)
c] ≤ −l + C0,

where k = 0, . . . , d .

Proof For integers 1 ≤ k ≤ r and 1 ≤ i ≤ d , by Chebychev inequality and by Lemma 6.3,

lim
N→∞

1

Nd
log PηN [Q̃Gm

i,k > l] ≤ −l + C0.

Hence, from

lim
N→∞

1

Nd
log(aN + bN) ≤ max

{
lim

N→∞
1

Nd
logaN, lim

N→∞
1

Nd
logbN

}
, (6.3)

we obtain the desired inequality. �

Lemma 6.5 There exists a finite constant C0, depending on T , such that for every G in
C∞

c (�T ) × [C∞
c (Dd)]d , and every sequence {ηN ;N ≥ 1} of configurations with ηN in XN ,

lim
N→∞

1

Nd
log EνN

κ

[
exp

{
Nd

∫ T

0

d∑

i=1

d∑

k=0

dt〈πN,k
t , ∂ui

Gk〉
}]

≤ C0

{
1 +

∫ T

0
‖Gt‖2

π dt

}
.

In particular, we have that if (ρ,p) is the solution of (3.2), then

sup
G∈C

1,2
0 (�T )

d∑

i=1

{∫ T

0
ds

∫

Dd

du∂ui
(ρ,p) · ∂ui

G −
∑

v∈V

∫ T

0
dt

∫

Dd

duχv(ρ,p)[ṽ · ∂ui
G]2

}
,

is finite, and vanishes if T → 0.



682 J. Farfan et al.

Proof Applying Feynman-Kac’s formula and using the same arguments of Lemma 3.3
in [12], we have that

1

Nd
logEνN

κ

[
exp

{
N

∫ T

0
ds

d∑

i=1

d∑

k=0

∑

x∈Dd
N

(Ik(ηx(s)) − Ik(ηx−ei
(s)))∂ui

Gk(s, x/N)

}]

is bounded above by

1

Nd

∫ T

0
λN

s ds,

where λN
s is equal to

sup
f

{〈
N
∑

i,k

∑

x∈Dd
N

(Ik(η(x)) − Ik(η(x − ei)))∂ui
Gk(s, x/N),f

〉

νN
κ

+ N2〈LN

√
f ,

√
f 〉νN

κ

}
,

where the supremum is taken over all densities f with respect to νN
κ . By Proposition 6.1,

the expression inside brackets is bounded above by

CNd − N2

2
DνN

κ
(f ) +

∑

i,k

∑

x∈Dd
N

{
N∂ui

Gk(s, x/N)

∫
[Ik(ηx) − Ik(ηx−ei

)]f (η)νN
κ (dη)

}
.

We now rewrite the term inside the brackets as

∑

v∈V

d∑

i=1

∑

x∈Dd
N

{∫
N(ṽ · ∂ui

G(s, x/N))[η(x, v) − η(x − ei, v)]f (η)νN
κ (dη)

}
.

Writing η(x, v) − η(x − ei, v) = η(x, v)[1 − η(x − ei, v)] − η(x − ei, v)[1 − η(x, v)], and
applying the same arguments in Lemma 3.8 of [12], we obtain that

N(ṽ · ∂ui
G(s, x/N))

∫
[η(x, v) − η(x − ei, v)]f (η)νN

κ (dη)

≤ (ṽ · ∂ui
G(s, x/N))2

∫
η(x, v)[1 − η(x − ei, v)]f (ηx−ei ,x,v)dνN

κ

+ 1

4

∫
f (ηx−ei ,x,v)

[
N

(
1 − γx−ei

, v

γx,v

)]2

νN
κ (dη)

+ N2
∫

1

2
[√f (ηx−ei ,x,v) − √

f (η)]2νN
κ (dη)

+ 2(ṽ · ∂ui
G(s, x/N))2

∫
η(x, v)[1 − η(x − ei, v)](√f (η)

+ √
f (ηx−ei ,x,v))2νN

κ (dη),

we have that (
√

f (η) + √
f (ηx−ei ,x,v))2 ≤ 2(f (η) + f (ηx−ei ,x,v)). An application of the

replacement lemma (Lemma 3.7 in [12]) concludes the proof. �
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6.3 Upper Bound

Fix a sequence {Fj ; j ≥ 1} of smooth functions dense in C(Dd) for the uniform topology,
with positive coordinates. For j ≥ 1 and δ > 0, let

Dj,δ =
{
π ∈ D([0, T ], M+ × Md); |〈πk

t ,Fj 〉|

≤ v̆k|V|
∫

Dd

Fj (x) dx + Cjδ, k = 0, . . . , d,0 ≤ t ≤ T

}
,

where v̆0 = 1 and v̆k = v̆, Cj = ‖∇Fj‖∞ and ∇F is the gradient of F . Clearly, the set Dj,δ ,
j ≥ 1, δ > 0, is a closed subset of D([0, T ], M+ × Md). Moreover, if

Em,δ =
m⋂

j=1

Dj,δ,

we have that D([0, T ], M0) = ⋂
n≥1

⋂
m≥1 Em,1/n. Note, finally, that for all m ≥ 1, δ > 0,

πN,ε belongs to Em,δ for N sufficiently large. (6.4)

Fix a sequence of configurations {ηN ;N ≥ 1} with ηN in XN and such that πN(ηN)

converges to γ (u)du in M+ × Md . Let A be a subset of D([0, T ], M+ × Md),

1

Nd
log PηN [πN ∈ A] = 1

Nd
log EηN [MH

T (MH
T )−1 1{πN ∈ A}].

Maximizing over πN in A, we get from (6.1) that the last term is bounded above by

− inf
π∈A

ĴH (πε) + 1

Nd
log EηN [MH

T e
−Nd

V
H
N,ε ] − c1

H (ε) − c2
H (N−1).

Since πN(ηN) converges to γ (u)du in M+ × Md and since Proposition 6.2 holds for P
H

ηN =
PηN MH

T in place of PηN , the second term of the previous expression is bounded above by
some CH (ε,N) such that

lim
ε→0

lim
N→∞

CH (ε,N) = 0.

Hence, for every ε > 0, and every H in C
1,2
0 (�T ),

lim
N→∞

1

Nd
log PηN [A] ≤ − inf

π∈A
ĴH (πε) + C ′

H (ε), (6.5)

where lim
ε→0

C ′
H (ε) = 0. Let

Br,l =
{

π ∈ D([0, T ], M+ × Md); max
1≤j≤r
1≤i≤d

d∑

k=0

Q̃Gj

i,k (π) ≤ l

}
,
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and, for each H ∈ C
1,2
0 (�T ), each ε > 0 and any r, l,m,n ∈ Z+, let J

r,l,m,n
H,ε : D([0, T ], M+ ×

Md) → R ∪ {∞} be the functional given by

J
r,l,m,n
H,ε (π) =

{
ĴH (πε) if π ∈ Br,l ∩ Em,1/n,

+∞ otherwise.

This functional is lower semicontinuous because so is ĴH ◦ �ε and because Br,l , Em,1/n are
closed subsets of D([0, T ], M+ × Md).

Let O be an open subset of D([0, T ], M+ × Md). By Lemma 6.4, (6.3), (6.4) and (6.5),

lim
N→∞

1

Nd
logQηN [O]

≤ max

{
lim

N→∞
1

Nd
logQηN [O ∩ Br,l ∩ Em,1/n], lim

N→∞
1

Nd
logQηN [(Br,l)

c]
}

≤ max
{
− inf

π∈O∩Br,l∩Em,1/n

ĴH (πε) + C ′
H (ε), −l + C0

}

= − inf
π∈O

L
r,l,m,n
H,ε (π),

where

L
r,l,m,n
H,ε (π) = min

{
J

r,l,m,n
H,ε (π) − C ′

H (ε), l − C0

}
.

In particular,

lim
N→∞

1

Nd
logQηN [O] ≤ − sup

H,ε,r,l,m,n

inf
π∈O

L
r,l,m,n
H,ε (π).

Note that, for each H ∈ C
1,2
0 (�T ), each ε > 0 and r, l,m,n ∈ Z+, the functional L

r,l,m,n
H,ε

is lower semicontinuous. Then, by Lemma A2.3.3 in [10], for each compact subset K of
D([0, T ], M+ × Md),

lim
N→∞

1

Nd
logQηN [K] ≤ − inf

π∈K
sup

H,ε,r,l,m,n

L
r,l,m,n
H,ε (π).

By (6.2) and since D([0, T ], M0) = ⋂
n≥1

⋂
m≥1 Em,1/n,

lim
ε→0

lim
l→∞

lim
r→∞ lim

m→∞ lim
n→∞L

r,l,m,n
H,ε (π)

=
{

ĴH (π) if Q(π) < ∞ and π ∈ D([0, T ], M0),

+∞ otherwise.

This result and the last inequality imply the upper bound for compact sets because ĴH and
JH coincide on D([0, T ], M0). To pass from compact sets to closed sets, we have to obtain
exponential tightness for the sequence {QηN }. This means that there exists a sequence of
compact sets {Kn;n ≥ 1} in D([0, T ], M+ × Md) such that

lim
N→∞

1

Nd
logQηN (Kn

c) ≤ −n.

The proof presented in [2] for the non interacting zero range process is easily adapted to our
context.
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6.4 Lower Bound

The proof of the lower bound is similar to the one in the convex periodic case. We just
sketch it and refer to [10, Sect. 10.5]. Fix a path π in � and let H ∈ C

1,2
0 (�T ) be such

that π is the weak solution of (4.9). Recall from the previous section the definition of the
martingale MH

t and denote by P
H

ηN the probability measure on D([0, T ],XN) given by

P
H

ηN [A] = EηN [MH
T 1{A}]. Under P

H

ηN and for each 0 ≤ t ≤ T , the empirical measure πN
t

converges in probability to πt . Further,

lim
N→∞

1

Nd
H(PH

ηN

∣∣PηN ) = IT (π |γ ),

where H(μ|ν) stands for the relative entropy of μ with respect to ν. From these two results
we can obtain that for every open set O ⊂ D([0, T ], M+ × Md) which contains π ,

lim
N→∞

1

Nd
log PηN

[
O
] ≥ −IT (π |γ ).

The lower bound follows from this and the IT (·|γ )-density of � established in Theorem 5.5.
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